Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Eng. sanit. ambient ; 25(1): 87-96, jan.-fev. 2020. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1090126

ABSTRACT

ABSTRACT As the world population increases, the need to develop more efficient wastewater treatment systems requires the use of new technologies. Software aided project and optimization of bioreactors and bioprocesses have become a matter of interest in recent years, especially due to the advance in the state-of-the-art of computational resources. This work aimed to perform gas/liquid numerical simulations using the Fluent 16.2 software and to validate this model through Particle Image Velocimetry (PIV) and shadow imaging techniques. Eulerian-Eulerian, laminar, tridimensional and transient simulations were carried out. The results for the mass imbalance for the gas and liquid phases, gas volumetric fraction, gas velocity, bubble size, liquid magnitude and upflow velocity and the velocity profiles for the liquid phase were successfully validated against experimental data. Concerning the dispersed phase, it was found a difference of 4.37% for the gas volumetric fraction between experiments and simulations. Simulated results showed a difference for the bubble mean velocity of 1.73% when compared with shadow imaging results. No coalescence was observed along the experiments, and the flow regime was characterized as dispersed bubble flow. Regarding the liquid phase, it was found a difference of 3.2% for the mean velocity, between simulated and PIV results. Simulated and experimental velocity profiles showed a better agreement at the center of the reactor. Some differences were observed in those profiles, due to geometry simplifications assumed in order to get a better mesh. Considering the good agreement between simulation and experiments, the model was considered validated.


RESUMO Conforme a população mundial aumenta, a necessidade de desenvolvimento de sistemas de tratamento de efluentes mais eficientes requer o uso de novas tecnologias. O projeto e otimização de biorreatores e bioprocessos auxiliados por softwares têm se tornado uma questão de interesse, em especial devido ao avanço no estado da arte quando se trata de recursos computacionais. O objetivo deste trabalho foi realizar simulações numéricas gás/liquido, utilizando o software Fluent 16.2, e validar experimentalmente o modelo computacional através de técnicas de PIV e Shadow Imaging. Foram realizadas simulações laminares, tridimensionais, transientes adotando uma abordagem Euleriana-Euleriana. Os resultados para o desequilíbrio de massa para as fases gasosa e líquida, a fração volumétrica de gás, a velocidade do gás, o tamanho da bolha, a magnitude e a velocidade ascensional do líquido e os perfis de escoamento do líquido foram validados experimentalmente com êxito. Foi verificada uma diferença de 4,37% entre resultados numéricos e experimentais para a fração volumétrica de gás no reator. Quando comparados os resultados das simulações com os resultados obtidos através de Shadow Imaging, foi encontrada uma diferença de 1,73% para a velocidade média da bolha. Não foi verificada coalescência ao longo dos experimentos realizados, e o escoamento foi caracterizado como fluxo de bolhas dispersas. Em relação à fase líquida, foi encontrada uma diferença de 3,2% para a velocidade média, entre os resultados simulados e de PIV. Os perfis de velocidade simulada e experimental mostraram uma melhor concordância no centro do reator. Algumas diferenças foram observadas nesses perfis, devido às simplificações geométricas assumidas para obter uma malha melhor. Considerando a boa concordância entre resultados numéricos e experimentais, o modelo foi considerado validado.

2.
Braz. arch. biol. technol ; 48(spe): 219-229, June 2005.
Article in English | LILACS | ID: lil-415477

ABSTRACT

Most electrochemical reactors present reactions with the growth and departure of gas bubbles which influence on the reactor hydrodynamics and this study is usually complex, representing a vast field for research. The present paper had as objective to study a bi-phase (gas-liquid) system aiming to foresee the influence of departure of hydrogen bubbles generated on effective electrode surface situated on cathodic semi-cell. Nevertheless, it was idealized that the gas was injected into the semi cell, through the effective electrode surface With this hypothesis, it was possible to study, and numerically analyze, the hydrodynamic behavior of the hydrogen bubbles in the interior of the study domain, applying concepts of computational fluid dynamics by using the computational applicative CFX-4 for the application of the MUSIG ("MUltiple-SIze-Group") model, taking into consideration the phenomena of coalescence and the distribution of the diameter of the bubbles.

SELECTION OF CITATIONS
SEARCH DETAIL